Lessons 009 \& 010 Independence and Random Variables

Friday, September 29

Independence

- We saw that sometimes knowing B impacts $P(A)$.
- When this does not occur, we say that A and B are independent.
- Specifically, we write $A \perp B$ if

$$
P(A \cap B)=P(A) P(B)
$$

A system requires two components to function. The components function independently. If component 1 functions 90% of the time, and component 2 functions 85% of the time, what is the probability that the system functions?

Independence

- If A and B are not independent we say that they are dependent.
- If $A \perp B$ then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$.
- Intuitively, knowledge of A tells us nothing about B and vice-versa.
- A company manufactures both washing machines and dryers.
- 30% of washing machines need service under warranty.
- 10\% of dryers need service under warranty.
- If a customer purchasing both a washer and dryer from this company, what is the probability that they both need service under the warranty, assuming independence?

$P(W \cap D)=P(W) P(D)=(0.3)(0.1)=0.03$

Independence Properties

- If $A \perp B$ then
- $B \perp A$
- $A^{C} \perp B$
- $A \perp B^{C}$
- $A^{C} \perp B^{C}$
- A company manufactures both washing machines and dryers.
- 30% of washing machines need service under warranty.
- 10\% of dryers need service under warranty.
- If a customer purchasing both a washer and dryer from this company, what is the probability that neither need service under warranty?

$P\left(W^{C} \cap D^{C}\right)=P\left(W^{C}\right) P\left(D^{C}\right)=(0.7)(0.9)=0.63$

- A company manufactures both washing machines and dryers.
- 30% of washing machines need service under warranty.
- 10\% of dryers need service under warranty.
- If a customer purchasing both a washer and dryer from this company, what is the probability that exactly one will need service under warranty?

$P\left(W^{C} \cap D\right)+P\left(W \cap D^{C}\right)$

$$
\begin{aligned}
& =P\left(W^{C}\right) P(D)+P(W) P\left(D^{C}\right) \\
& =(0.7)(0.1)+(0.3)(0.9) \\
& =0.07+0.27=0.34
\end{aligned}
$$

30% of students in a class say that pink is their favourite colour. 15% of students say pink is their favourite colour and their favourite number is 7 . If these preferences are independent, what proportion of students have 7 as their favourite number?
\int
50\%

30\%
\square
Not Enough Information
\square

Suppose that a coin is flipped 5 times. Define the following events: A that a tail shows up on flip $1, B$ that a head shows up on flip $2, C$ that three heads appear. What statements is true?

$A \perp B$ and $A \perp C$ and $B \perp C$	0%
$A \not \perp B$ and $A \perp C$ and $B \perp C$	0%
$A \perp B$ and $A \not \perp C$ and $B \not \perp C$	0%
$A \not \perp B$ and $A \perp C$ and $B \not \perp C$	0%

A system has two components, but needs only one to function. The components function independently. If component 1 functions 90% of the time, and component 2 functions 85% of the time, what is the probability that the system functions?

$$
1-(0.1)(0.15)=0.985
$$

$(0.9)(0.85)+0.9+0.85=2.515$ so probability is 10\%
$1-0.9 \times 0.85=0.235$
j 0\%
$0.9 \times 0.85=0.765$

Mutual Independence

- For a set of n events, A_{1}, \cdots, A_{n}, we say that these events are mutually independent if every subset $\left(i_{k}\right)$ of every size (k) we have

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=\prod_{j=1}^{k} P\left(A_{i_{j}}\right)
$$

- A roulette wheel has 18 red, 18 black, and 2 green spaces.
- What is the probability that in the next three plays on the wheel we observe Green, Black, Red in order?

$$
\begin{aligned}
& P\left(\left\{S_{1}=G\right\} \cap\left\{S_{2}=B\right\} \cap\left\{S_{3}=R\right\}\right) \\
= & P\left(\left\{S_{1}=G\right\}\right) P\left(\left\{S_{2}=B\right\}\right) P\left(\left\{S_{3}=R\right\}\right) \\
= & \frac{2}{38} \cdot \frac{18}{38} \cdot \frac{18}{38} \\
= & 0.0118093016
\end{aligned}
$$

Mutually Exclusive Events

- If two events cannot both happen they are said to be mutually exclusive.
- Mutually exclusive events are always dependent.

Random Variables

- Often we summarize the results of an experiment with a measure of interest.
- Instead of sequences of H and T, we report the count of heads.
- If we associated a mapping from events in the sample space \mathcal{S} to the real numbers, this mapping is called a random variable.
- A random variable is a quantitative variable that depends on chance.
- We use capital letters to denote random variables, and lower case letters to denote observed outcomes.

Random Variable Examples

- Let X be the number of tails in ten tosses of a coin.
- $X(\omega) \in\{0, \cdots, 10\} \quad \omega \in\{(H, H, H, \cdots, H), \cdots,(T, T, T, \cdots, T)\}$
- Let Z be the sum of three rolls of a die.
- $Z(\omega) \in\{3,4, \cdots, 18\} \quad \omega \in\{(1,1,1),(1,1,2), \cdots,(6,6,6)\}$.
- Let W be the number of days that it rained in a given week.
- $W(\omega) \in\{0,1, \cdots, 7\} \quad \omega \in\{(\mathrm{NR}, \cdots, \mathrm{NR}), \cdots,(\mathrm{R}, \cdots, \mathrm{R})\}$
- Let T be the time that an integrated circuit operates for before failure.

Suppose a student is calling a help desk for support. If the student reaches someone this is a success (S) and otherwise a failure (F). Which of the following is a random variable for this experiment?

$$
\begin{array}{ll}
X=S \text { if it is a success. } & 0 \% \\
X=1 & 0 \% \\
X(S)=0 \text { and } X(F)=1 . & 0 \% \\
X(S)=1 . & 0 \%
\end{array}
$$

An experiment looks at the number of pumps in use at two gas stations, A and B. Take X to be a RV counting the total at $A+B, Y$ to be the difference $A-B$, and Z to be the max of A and B. Suppose $x=5, y=-1, z=3$.

```
\(\omega=(5,0)\)
〕. \(0 \%\)
\(\omega=(3,3)\)
§
\(\omega=(3,2)\)
\(\int 0 \%\)
\(\omega=(2,3)\)

\section*{Example}


\section*{Discrete versus Continuous}
- If you can enumerate all values for a random variable it is discrete.
- Events take the form \(\{X=c\}\) or \(\left\{X \in\left\{c_{1}, \ldots, c_{n}\right\}\right\}\).
- If you cannot (values taken from sets of intervals), the random variable is continuous.
- Events take the form \(\{X \geq c\},\{X \leq c\}\), or \(\left\{X \in\left[a_{1}, b_{1}\right] \cup \cdots \cup\left[a_{n}, b_{n}\right]\right\}\)

A random variable takes a value of 1 if a student successfully reaches the help desk, and is 0 otherwise.

This random variable is discrete.
This random variable is continuous.
-

Batteries coming off of a production line are tested until one fails to meet specification. The total number of trials is recorded as a random variable.

This random variable is discrete.


This random variable is continuous.

\section*{A randomly selected piece of carry-on luggage is weighed.}

This random variable is discrete.

\(\int\)

This random variable is continuous.
?

The time until an integrated circuit fails is recorded as a random variable \(T\).

This random variable is discrete.
? \(0 \%\)

This random variable is continuous.```

